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Abstract

Recently, a method has been proposed for determining material true stress—strain curve with rectangular tensile bars
up to localized necking. In the proposed method, material true stress—strain curve can be directly calculated from the
load versus thickness reduction (at the minimum cross-section) curve. The method was established based on the finite
element (FE) analysis for isotropic materials. In this study, this method has been extended for materials with isotropic
elastic properties but anisotropic plastic properties. Two cases, transverse anisotropy and planar anisotropy, have been
considered. Hill’s anisotropic material model implemented in ABAQUS was applied for the study. More than 30 three-
dimensional FE analyses of rectangular specimens with different anisotropy value, hardening exponent and cross-
section aspect ratio have been carried out. It is shown that the relation between thickness reduction and total area
reduction of a given cross-section is influenced by material plastic anisotropy. It is, however, found that the anisotropic
effect on the thickness—area reduction relation can be normalized by the width to thickness strain increment ratio r, and
a modified thickness—area reduction relation is proposed and numerically and experimentally verified. One practical
problem in tensile test is that it is difficult to predict the necking location. In this regard, a study on the sensitivity of
initial notch geometry has been carried out. It is found that for a fixed initial notch radius, the percentage of error is
approximately equal to the percentage of initial width reduction. The accuracy of using large initial width reduction can
be improved by using large notch radius. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: True stress—strain curve; Anisotropic materials; Rectangular tensile specimens; Plastic forming

1. Introduction

The whole range true stress—strain curve of a material including material response in both the pre and
post-diffuse necking stages is very important for metal forming analysis and for the analysis of ductile
fracture. Material stress—strain curve before necking can be easily determined by using either round
or rectangular tensile bars. There was, however, no method available for determining the whole range

* Corresponding author.
E-mail address: zhiliang.zhang@matek.sintef.no (Z.L. Zhang).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00302-4



4490 Z.L. Zhang et al. | International Journal of Solids and Structures 38 (2001) 44894505

stress—strain curve with rectangular tensile bars. The main challenge is to calculate the current minimum
cross-section area of a tensile specimen. For anisotropic materials and also thin materials, it is very ad-
vantageous to use rectangular tensile bars. Recently, a method has been developed for determining true
stress—strain curve by using rectangular tensile bars (Zhang et al., 1999). By measuring the thickness re-
duction at the minimum cross-section (Fig. 1) and the corresponding load, the true stress—strain curve can
be easily calculated by the proposed method. The method was established based on the finite element (FE)
analysis for isotropic materials. Many engineering alloys, however, display anisotropic plastic behaviour
(Lademo, 1997a,b). In this study, the method has been extended to materials with isotropic elastic prop-
erties but anisotropic plastic properties. It is shown that the relation between thickness reduction and total
area reduction of a given cross-section is influenced by materials plastic anisotropy — the width to thickness
strain increment ratio, r. For r larger than 1, the previous isotropic relation underestimates the area re-
duction for a given thickness reduction, and vice versa. An attempt has been made to modify the proposed
relation for anisotropic materials. The simple anisotropic material model, Hill’s yield model implemented in
ABAQUS, was used (abaqus, 1996; Hill, 1989). Two cases, transverse anisotropy and planar anisotropy have
been considered. By carrying out a large number of three-dimensional finite element method (FEM) an-
alyses, it is found that the anisotropic effect on thickness—area reduction relation can be normalized by the
width to thickness strain ratio, r, and a modified thickness—area reduction relation for anisotropic materials
is proposed.

One practical problem in the tensile test is that it is difficult to predict the necking location, and an initial
notch imperfection is often used to trigger necking. In this regard, a study on the sensitivity of initial notch
geometry has been carried out. It is found that for a fixed initial notch radius which is three times the initial
width, the percentage of error is approximately equal to the percentage of initial width reduction. The
accuracy of using large initial width reduction can be improved by using large notch radius.

In the following, the equation for calculating the minimum cross-section area reduction (at the diffuse
necking region) based on the thickness reduction of a rectangular tensile specimen for isotropic materials is
briefly repeated first. Then, the anisotropic material model, the effect of plastic anisotropy on the area
reduction equation is presented, and a new equation is proposed. Finally, the results of sensitivity analysis
of notch imperfection on the true stress—strain curve and verification of the proposed method by comparing
with experimental results are reported. A summary of the findings in this investigation is given in Section 7.
The validity of the proposed equation is also discussed.

2. Thickness—area reduction equation for isotropic materials

Recently, an extensive three-dimensional numerical study for isotropic materials has been carried out on
the diffuse necking behaviour of tensile specimens with rectangular cross-section. An approximate relation
between the area reduction of the minimum cross-section and the measured thickness reduction is estab-
lished (Zhang et al., 1999). Fig. 1 shows typical initial and deformed minimum cross-section and contact
points for measuring thickness reduction of a tensile specimen. It is shown that the area reduction can be
separated into two parts: the area reduction due to proportional deformation calculated directly from the
thickness reduction and the non-proportional area reduction due to shape change of the cross-section. The
total area reduction deviates from the proportional part once a diffuse necking starts, just after the max-
imum load. Numerical results show that the area reduction is controlled by two factors: the initial aspect
ratio of the cross-section and materials hardening ability. After normalization with the cross-section aspect
ratio and the strain at the maximum load, which is an important representation of materials plastic
hardening ability, it has been found that the area reduction versus thickness reduction curves for all the
materials investigated collapsed into one. Based on this finding, an area reduction equation has been de-
veloped. The total area reduction ratio of the cross-section for isotropic materials can be written as
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Fig. 1. Typical initial (—) and deformed (- - -) minimum cross-sections — proportional straining followed by non-proportional de-
formation: A and B are contact points for measuring thickness reduction, and C and D are points for measuring width reduction.
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where the first term on the right-hand side denotes the area reduction due to proportional thickness re-
duction, and the second term denotes the area reduction due to shape change of the cross-section. Before
the maximum load, the deformation of the cross-section is proportional and the cross-section does not
change shape (Fig. 1). The second term comes into effect only when the necking starts, just after the
maximum load is reached.

The proportional part in Eq. (1) can be easily written as

(5., 2(0)- (%) @
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In Eq. (1), fi(S) is the function of cross-section aspect ratio, S = wy/f, (Fig. 1) which has been found as
(Zhang et al., 1999):

f+(S) =0.1686 4 0.6 In(S). (3)

The material hardening effect on the non-proportional area reduction is characterized by one material
parameter — the thickness reduction ratio at the maximum load, (At/t), . A linear equation has been
obtained for the material hardening function, f,,

fon (At> = 0.2845 — 0.956<At) . (4)
tO Pmax t() Pmax

After the area reduction ratio has been normalized by the aspect ratio function, f;, and the material
hardening function, f,, a geometry and material independent function is obtained. This function has been
fitted by the following equation:

fi(x) = co + crx + e + eax’ 4 egx, (5)
where x = At/ty — (At/ty), and the constants are

o = —0.03069,

¢ = 1.09016,

¢ = 11.1512, (6)

¢y = —25.1,

cy = 14.8718.

Eq. (1) has been verified for materials with various hardening laws and for specimens with aspect ratio less
than and equal to 8. Numerical verification has shown that Eq. (1) is very accurate (Zhang et al., 1999).

3. Anisotropic materials and anisotropic plastic model

Eq. (1) was developed for isotropic materials. Many extruded aluminium alloys, however, exhibit an-
isotropy in mechanical properties due to the crystallographic texture caused by the extrusion process. It has
been observed that the anisotropy in elasticity is usually less significant compared with anisotropy in
plasticity, and anisotropic plastic models must be used to describe the plastic behaviour of the alloys
(Lademo, 1997a,b). Several anisotropic material models, including the Hill model, the Barlart model
(Barlet and Lian, 1989; Barlet et al., 1997) and the model by Karafillis and Boyce (1993), have been recently
reviewed by Lademo (Lademo, 1997a,b). It was concluded that none of the existing models with associated
flow rule were able to completely describe the anisotropic flow properties observed in uniaxial tensile tests.

In this study, it is not intended to study how the anisotropic plastic flow behaviour can be described by
an advanced anisotropic model. Rather, the purpose was to investigate how the shape change of the cross-
section is influenced by the anisotropic deformation behaviour, i.e., to derive a relation between the area
reduction and an anisotropic strain parameter (not the stress parameters which describe anisotropic plastic
flow function).

In this study, a relative simple model, Hill’s model implemented in ABAQUs was used. Hill’s yield
function is an extension of the conventional Mises yield function to allow anisotropic material behaviour.
The function is written as

f(lo) = \/F(ay — 02)2 +Glo. —a,)* + H (o, — ay)z + 2Lt + 2M12 + 2N7] (7)

xy?
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where F, G, H, L, M, and N are constants characteristic of the current state of anisotropy at different
orientations. In ABAQUS, Hill’s yield function equation (7) is defined from user input consisting of different
ratios of yield stress in different directions with respect to a reference stress. In the FEM models used in this
study, y-axis is the tensile axis, x represents the width direction of the cross-section and z is the thickness
direction (Fig. 1). The yield stress in the y-axis has been taken as the reference yield stress. Therefore, the
yield stress ratio in y-axis is always 1.0, a, = 0,/g, = 1.0. The yield stress ratios in the x and z directions, o,
and o, have been changed to reflect different material anisotropy. When the yield stress ratios have been
defined, ABAQUSs will calculate the anisotropy parameters according to the following equations:
F 1 | 1 1
2 ( + o o )’

z

4 X 8
g l(, 1] ®)
2 2 or)’
L.5 1.5 1.5
L:—z7 M:_Z’ N:—2
ayz % (xxy

Once the anisotropy stress parameters have been calculated, the anisotropic strain parameter, width to
thickness strain increment ratio can be obtained
de, H
== 9)
de, F

Both transverse anisotropy, o, = o, = 1, o. # 1, and a special case of planar anisotropy, o. = a, = 1,
o, # 1 have been considered. The conclusions drawn have been verified to the general anisotropy case,
o, # o, # o,. In all the analyses, the shear components of the anisotropy constants have been taken to be
zero. In total, more than 30 analyses of tensile specimens with varying anisotropy, hardening exponent and
aspect ratio have been performed.

4. Thickness—area reduction for anisotropic materials
4.1. “Isotropized” thickness reduction

For isotropic materials, the thickness strain at maximum load is an important parameter for describing
material’s hardening ability. For anisotropic materials, the stress—thickness strain curves depend also on the
plastic anisotropy. Fig. 2a shows the FE analysis results on the effect of plastic anisotropy on stress—
thickness strain curves. The material hardening exponent in Fig. 2 is n = 0.1, and aspect ratio is 4. The same
power-hardening law as (Zhang et al., 1999) was used, & = 6¢(1 4 &,/&)", where @ is the flow stress cor-
responding to the equivalent plastic strain ,, oy is the yield stress, & is the yield strain & = 0¢/E, and E the
Young’s modulus. The r value varied from 0.14 to 3.57. The numerical procedure used in the present
analyses are the same as used in (Zhang et al., 1999). It can be seen that the thickness strain at maximum
load (necking strain) decreases with the increase of r value and thus indicates that the previous thickness—
area reduction equation for isotropic materials cannot be directly applied to anisotropic materials. Fig. 2a
shows that plastic anisotropy effect comes into play when the plastic deformation starts. However, in
uniaxial tensile test, materials with different flow properties in width and thickness directions but same flow
property in tensile direction should result exactly in the same total area reduction at a given tensile load.
For isotropic materials, the true strain before necking can be written:
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Fig. 2. (a) Examples on the effect of plastic anisotropy on stress—thickness strain curves for material with hardening exponent n = 0.1,
and aspect ratio S = 4, and (b) stress versus isotropized thickness strain curves. g, is the gross stress.

In <%) =2, (10)

where, ¢, is the thickness average strain. For anisotropic materials the above equation becomes

ln<il40> =g +e,=(1+r. (11)

In order to study the effect of plastic anisotropy on the area versus thickness reduction curve, the
thickness average strain can be “isotropized” from Egs. (10) and (11)
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Fig. 2b shows the stress versus isotropized thickness strain curves. It can be seen that after isotropizing, the
stress—thickness strain curves before necking become independent of the plastic anisotropy (necking occurs
at the same thickness strain as the isotropic one); however, the curves after necking is still dependent on the
plastic anisotropy. In the following, we will study the possibility to normalize the anisotropy effect.

4.2. The effect of anisotropy on the area reduction curve

By fixing material hardening parameter and the specimen aspect ratio, we now study the effect of plastic
anisotropy by investigating the difference of area reduction between an anisotropy case and the corre-
sponding isotropy case:

() () (B, 0

Fig. 3 shows the anisotropy effect on the area reduction (Eq. (13)) versus net isotropized thickness re-
duction for the cases » < 1.0, both for planar anisotropy and transverse anisotropy. In Eq. (13), the
istropized thickness reduction (Eq. (12)) is used. Because of this, the influence of anisotropy on the area
reduction curve starts only after the maximum load is reached. It can be observed that the area versus
isotropized thickness reduction curves have similar pattern up to the range of 50% isotropized thickness
reduction. For the cases » < 1.0, the anisotropy increases the area reduction at a given isotropized thickness
reduction compared with isotropic material. In other words, the isotropic thickness—area reduction (Eq. (1))
would underestimate the total area reduction. For » > 1.0, the observation is opposite (Fig. 4). Fig. 3 shows
that no matter whether it is planar anisotropy or transverse anisotropy, same r value yields nearly the same
difference in area reduction.

A normalization procedure has been applied to Fig. 3 such that all the curves are normalized by its value
at 50% of isotropized thickness reduction. The normalized curves are shown in Fig. 5. It is interesting to see
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Fig. 3. The anisotropy effect on area reduction versus net isotropized thickness reduction curve for » < 1.0. In the legend, P stands for
planar and T for transverse.
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Fig. 4. The anisotropy effect on area reduction versus net isotropized thickness reduction curves for » > 1.0.
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Fig. 5. Normalized area reduction versus thickness reduction curves for » < 1.0 (normalized form of Fig. 3).

that all the curves nearly collapse into one. This observation indicates that the effect of plastic anisotropy on
area reduction can be normalized by a function of the parameter r. Similar observation has been seen with
Fig. 4, and the normalized curves for Fig. 4 are nearly identical to the ones shown in Fig. 5. One typical
curve has then been selected and fitted in Fig. 6 by the following equation:

fi(x) = g0+ gix1 + g2x] + &3], (14)
where f;(x) is the y axis of Fig. 5, x; = 1 +r/2(At/ty — (At/ty)p ) and

g = —0.02156, g =0.79123, g = 154188, g5 =191116. (15)
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Fig. 6. Representative FE result and fitted solution for the unqiue anisotropy function-normalized area reduction versus isotropized net
thickness reduction curve.

The quantities used for the normalization for the curves shown in Figs. 3 and 4 have been plotted against
the corresponding r values in Fig. 7. Two approximate linear relations (for » < 1.0 and » > 1.0, respectively)
can be seen. The curve shown in Fig. 7 has also been numerically fitted with the following equation:

f,(l”) = d() + d]l" + d21’2 + d3l"3 + d4l"47 (16)
where f,(r) is the y axis in Fig. 7 and
dy = 0.62957, dy = —1.43536, d, = 1.16154, dy = —0.41161, ds = 0.051176. (17)

Eq. (14), Fig. 6 represents the unique function for plastic anisotropy, which is independent of the value of
plastic anisotropy parameter, while the effect of the absolute value of plastic anisotropy is considered in Eq.

(16) (Fig. 7).
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Fig. 7. The effect of anisotropy on the normalizing quantities.
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4.3. New thickness—area reduction equation for anisotropic materials

Section 4.2 shows that the area reduction after diffuse necking caused by plastic anisotropy can be
normalized by a function of the anisotropy strain parameter, r. The area reduction caused by plastic an-
isotropy belongs to material property and should be independent of the geometry characteristic (the aspect
ratio function). By this reasoning and summarizing the results from Figs. 3—7, we get the following new area
reduction equation for anisotropic materials:

M () L ()t nton 5010 a8)

E to

where

(14 g B f

XI B 2 tO tO szlx 7
1+ f

nl B 2 tO Pmélx .

For r = 1.0, Eq. (12) returns to the one for isotropic material. The same rule as for Eq. (1), the second
term of Eq. (18) becomes active only after the maximum load has passed, i.e., when the deformation of the
cross-section becomes non-proportional. In general, the area reduction equation for anisotropic material
has the following form:

AA4 At At
=7 = = . 2
Ay f<t07S7<l‘o >Pmax7r> (20)

(19)

5. Numerical and experimental verifications
5.1. Numerical verifications

Eq. (18) has been numerically verified for tensile specimens with different aspect ratios and material
hardening exponents. The comparison is shown in Figs. 7-11, where S is the section aspect ratio, n, the
hardening exponent, and r, the width thickness strain ratio.

Figs. 8 and 10 shows that for » < 1 and both low and strong plastic hardening, the calculated true stress—
strain curves from the procedure for isotropic materials (Eq. (1)) will cross with the ““real” true stress—strain
curve from FE analysis. However, the calculated curves according to the new procedure for anisotropic
materials agree very well with the real curves, with less than 2% of error at 100% true strain. The general
observation is that when 1.0 > » > 0.5, the error by using the isotropic procedure for anisotropic materials
is not significant.

The aspect ratio and material hardening in Figs. 9 and 11 are very different. It can be observed that the
procedure for isotropic materials will result in significant error for the cases with » > 1. For low hardening
material, a maximum point in the true stress—strain curve can be found if the procedure for isotropic
material is used. Figs. 9 and 11 clearly show that the new procedure for anisotropic materials gives very
satisfactory results. They also indicate that it is very important to consider the effect of plastic anisotropy
on material true stress—strain behaviour in tensile tests, especially for the materials with » > 1.
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Fig. 9. Comparison of the prediction using isotropic and anisotropic equations with the FE results for S =5, n = 0.05, » = 2.38.

5.2. Experimental verifications

An experimental programme has been carried out in (Zhang et al., 2000) to verify the proposed pro-
cedure. Thirty three tensile specimens with rectangular cross-section, including three aluminium alloys and
one steel, have been tested. The cross-section aspect ratio varied from 2 to 4. The nominal plate thickness is
2.5 mm. Fig. 12 shows the profile of the cross-section for a 6060.35 T5 aluminium alloy with aspect ratio 2
and » = 0.66, measured from interrupted test specimen together with one from FEM analysis. This com-
parison shows that the cross-section of the tensile specimens for this aluminium alloy was well simulated by
the FEM analysis.

Fig. 13a compares the true stress—strain curves for an aluminium 7108.70 T6 alloy determined by using
the procedure for anisotropic materials from rectangular tensile specimens with aspect ratios, 2 and 4. The
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Fig. 11. Comparison of the prediction using isotropic and anisotropic equations with the FE results for S =2, n = 0.1, r = 1.42.

number in the legend is the total test number in the verification programme. In total, nine tests were carried
out for this alloy. We can observe that the results are independent of the cross-section aspect ratio. The
scatter band is very small, less than 10 MPa.

The true stress—strain curve obtained from rectangular tensile specimens based on the procedure
for anisotropic materials has been compared with the one obtained from conventional round tensile
specimen with a diameter 4 mm (Fig. 13b) for the 71089.70 T6 alloy. The curve obtained according to
the procedure for isotropic materials is also shown in the figure. There is a large difference between the
curves obtained from the procedure for isotropic materials and anisotropic materials. The curve from the
procedure for anisotropic materials is slightly lower than, but very close to the curve from the round
specimens.
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Fig. 13. (a) The true stress—strain curves determined from rectangular tensile specimens with two different aspect ratios, for the alu-
minium 7108.70 T6 alloy, and (b) comparison of the true stress—strain curve from rectangular and round specimens. “ISO’” means the
procedure for isotropic materials, and “ANISO” for anisotropic materials.

6. Effect of initial imperfection on the true stress—strain curve
One practical difficulty using Eq. (18) is that the location of final necking is difficult to predict for smooth

tensile specimens. For practical purpose, it is advantageous to introduce some initial imperfection (Fig. 14),
for example, an initial notch in the width direction shown in Fig. 12 so that the location of necking can be
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predetermined. It is therefore important to study how the accuracy of the true stress—strain curve is in-
fluenced by the severity of the initial imperfection. Two parameters of the initial imperfection, the extent of
the width reduction, Aw/w, and the notch radius, R, have been investigated. The aspect ratio of the tensile
specimen was kept constant at 4, and only isotropic material with hardening exponent » = 0.1 has been
considered. Totally, about 15 analyses have been carried out.

6.1. The effect of width reduction ratio, Aw/w,

The range of the width reduction ratio, Aw/wy from 0.2% to 4% have been studied. Fig. 15 shows the in-
plane meshes for the models with different Aw/w,. The basic mesh pattern is exactly the same as the one
used in (Zhang et al., 1999). Fig. 16 shows the effect of the width reduction ratio, Aw/w, for a given notch
radius 30 mm which is three times the initial width, on the true stress—strain curves. It can be observed that
the effect of width reduction ratio on the stress—strain curve was constant throughout the entire true strain
range (curves with different imperfection do not cross each other). In general, specimen with initial im-
perfection will overestimate the true stress, and high width reduction Aw/wj results in higher true stress,
indicating larger error. The effect of the Aw/w, on true stress at a true strain 1.5% is shown in Fig. 17. The
error is calculated as (o)™ — a)*!) /)", where ¢)"*" is the material true (flow) stress inputted in the FE
analyses. One rough conclusion that can be drawn from Fig. 17 is that the error in percentage is nearly
equal to the percentage of initial width reduction.

0.2% 1.2% 4.0%

Fig. 15. Meshes in the x—y plane for different Aw/wj ratios: the aspect ratio is 4, and notch radius is three times the initial width.
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Fig. 16. The effect of Aw/w, on the global true stress—strain curves: the aspect ratio is 4, and notch radius is three times the initial width.
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Fig. 17. Errors in calculated true stress versus initial width imperfection Aw/wy: the notch radius is three times the initial width.

6.2. The effect of initial notch radius

For the model with width reduction ratio, Aw/wy, = 4%, the effect of notch radius on the accuracy has
been investigated. Fig. 18 shows the in-plane meshes used in the study. Three notch radii, R = 3wy, 6wy, and
9w, have been considered. The effect of notch radius on the true stress at a true strain 1.5% is shown in
Table 1. It can be seen that for a given width reduction, the accuracy is improved by using larger notch
radius, i.e., the error introduced by large width reduction is reduced by large notch radius. The error for an
initial width reduction ratio 4% can be reduced 40% when the notch radius increases from 3w, to 9w,. The
degree of error for the case with 4% initial width reduction and 9w, notch radius is approximately equal to
the case with 1.2% initial width reduction and 3wy notch radius. From these results, we can conclude that
larger notch radius is generally preferred when a large imperfection is used.
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Fig. 18. Meshes used for the study of notch radius effect: width reduction ratio is 4%.

Table 1
Error versus initial notch radius
Notch radius Error (%)
Infinite 0
9117() 1.7
6wy 2.1
RN 2.7
7. Summary

In order to determine the whole range true stress—strain curve, it is necessary to measure thickness re-
duction of the minimum cross-section of a tensile specimen. It is a common practice to apply an initial
imperfection to the specimen so that the diffuse necking location can be predetermined. In this study, a
sensitivity analysis of initial imperfection in the width direction of a rectangular cross-section tensile
specimen on the true stress—strain curve has been carried out. It has been found that for a fixed notch radius
3wy, the percentage of error is approximately equal to the percentage of initial width reduction. The error
can be reduced by applying a larger initial notch radius.

It has been found that the thickness—area reduction relation is influenced by the width to thickness strain
ratio, r. For r > 1, the isotropic equation underestimates the thickness—area relation, and for » < 1, it is
opposite. Numerical results have shown that the effect of anisotropy on the thickness—area reduction can be
characterized as a function of r. Based on the FEM results, a new equation for calculating the total area
reduction from the thickness reduction for anisotropic material has been proposed. The equations return to
the isotropic equation for » = 1.0. The proposed equation has been numerically and experimentally verified
for specimens with different aspect ratios, hardening exponent and r value. Very good accuracy is observed.
Numerical verification has shown that it is very important to apply the new procedure for anisotropic
materials, especially for materials with » > 1. Experimental verifications show that the procedure give very
consistent results.

In this study, only yield strength anisotropy was considered. The elastic properties and hardening ability
of the material were assumed to be isotropic. Anisotropy may exist in all the three aspects in semi-finished
aluminium products; however, the elastic anisotropy effect may not be significant. Recent numerical results
by Beaudoin et al. (1996) show that the yield surface shape was not drastically changed by the texture
evolution, and it was reasonable to assume isotropic hardening.

Although a relatively simple yield function, Hill’s model has been used. Hill’s model may not be the best
anisotropic material model for aluminium; however, as argued in Section 4, the specific material model may
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not be crucial to the proposed thickness—area reduction equation because the thickness—area reduction was
characterized by a deformation parameter, r, rather than a plastic flow stress parameter, for example, the o.
This hypothesis should be verified both by tests and further numerical analysis.

The procedure to use the proposed method for determining true stress—strain curve for isotropic and
anisotropic materials is summarized as follows: (1) Prepare the tensile specimens. The recommended aspect
ratio is 4, and initial width imperfection is 1% and the notch radius is three times the initial width. (2)
Measure the load, thickness reduction and width reduction according to the illustration shown in Fig. 1. (3)
Determine the anisotropy parameter r according to Eq. (9) from the measured width—thickness strain re-
lation. (4) Calculate the load versus area reduction curve with Eq. (18), and the true stress—strain curve.
Finally, it should be noted that the resulting true stress—strain curve should be corrected by the Bridgman
equation (Bridgman, 1952) before being used in FE analyses. The validity of Bridgman’s correction to
rectangular tensile specimens has been discussed by Zhang et al. (1999).
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